

Modeling the development of cognitive abilities over time

Jessica Schaaf, Jessica.Schaaf@radboudumc.nl, @JessicaVSchaaf

Cognition as dynamic process

HEALTH

Joe Biden's 'Cognitive Fluctuations'

Which version of the president will show up next?

Slip-ups like Joe Biden's misnaming of Trump and Harris

Cognition as dynamic process

HEALTH

Joe Biden's 'Cognitive Fluctuations'

Which version of the president will show up next?

Cognition as dynamic process

HEALTH

Joe Biden's 'Cognitive Fluctuations'

Which version of the president will show up next?

Cognition as dynamic process

HEALTH

Noise

Joe Biden's 'Cognitive Fluctuations'

Which version of the president will show up next?

How fast you come up with a name (seconds)

Modelling cognitive fluctuations

Detailed description of fluctuations

- > On which time scales do cognitive fluctuations occur?
- ➤ Can we relate cognitive fluctuations to external variables?

Slip-ups like Joe Biden's misnaming of Trump and Harris are common, and usually caused by lack of sleep or stress, experts say

Modelling cognitive fluctuations as noise

Modelling cognitive fluctuations as something of interest

Interpretation: the tendency of a person/ system to persist in deviations from their mean

d

Modelling cognitive fluctuations as something of interest

Hierarchical modelling of cognitive fluctuations

Dynamic Structural Equation Model

 $u_{\Phi i}$ Φ_i ф + ψ Ψ_i + u_{ψ_i} 10 20 30 50 40 Day

α

 α_i

+

 $u_{\alpha i}$

Asparouhov et al. (2018). Structural Equation Modeling: A Multidisciplinary Journal; Jongerling et al. (2015). Multivariate Behavior Research; McNeish et al. (2020). Psychological Methods.

Applications

Emotional/affective inertia (Koval & Kuppens, 2012, 2024; Kuppens et al, 2012; Suls et al., 1998)

Stress inertia (Ekuni et al., 2022; Sperry & Kwapil, 2022)

Solitude inertia (Elmer et al., 2020)

RT inertia (Aristodemou et al., 2024)

• • •

Aristodemou et al. (2024). Collabra; Ekuni et al. (2022). Sleep Health; Elmer et al. (2020). Journal of Abnormal Psychology; Koval & Kuppens (2012). Emotion; Koval & Kuppens (2024). Changes in Emotion and Mental Health; Kuppens et al. (2010). Psychological Science; Sperry & Kwapil (2022). Behavioral Sleep Medicine; Suls et al. (1998). Personality and Social Psychology Bulletin.

Challenges in standard DSEM

- ➤ Default inertia parameter is *symmetric*
- ➤ Inertia of deviations above and below the mean treated equally
- > Responding faster than average equally likely to persist as responding slower than average
- > Probably not true
 - > post-error slowing
 - > any measure with ceiling effects (e.g., intelligence or memory)

Asymmetric variant of DSEM

Solution: *Threshold AR*

➤ Estimate two inertia parameters, above and below the mean

$$\alpha_i$$
 = α + α_i

$$\left(\phi_{i} \right) = \left(\phi \right) + \left(u_{\phi i} \right)$$

$$\psi_i$$
 = ψ + ψ_i

Asymmetric variant of DSEM

Solution: *Threshold AR*

➤ Estimate two inertia parameters, above and below the mean

$$\begin{array}{c} \alpha_{i} \\ \alpha_{i} \\ \end{array} = \begin{array}{c} \alpha \\ \end{array} + \begin{array}{c} u_{\alpha i} \\ \end{array}$$

$$\begin{array}{c} \varphi_{i}^{+} \\ \end{array} = \begin{array}{c} \varphi^{+} \\ \end{array} + \begin{array}{c} u_{\varphi_{i}^{+}} \\ \end{array}$$

$$\begin{array}{c} \varphi_{i}^{-} \\ \end{array} = \begin{array}{c} \varphi^{-} \\ \end{array} + \begin{array}{c} u_{\varphi_{i}^{-}} \\ \end{array}$$

$$\begin{array}{c} \psi_{i} \\ \end{array} = \begin{array}{c} \psi \\ \end{array} + \begin{array}{c} u_{\psi i} \\ \end{array}$$

DYNamics of Asymmetric Timeseries (DYNASTI)

Implemented in Stan: free, flexible, updates, community Univariate and bivariate examples

Workshop on basics of DSEM in Stan: https://github.com/mearistodemou/
DSEM_workshop

Stan models and simulation code: https://osf.io/hwmgk/

DYNamics of Asymmetric Timeseries (DYNASTI)

DYNASTI DSEM simulations

500 datasets

N = 50 subjects

T = 100 time points

Symmetric

Asymmetric

All code is openly available at https://osf.io/hwmgk/

DYNASTI DSEM simulations – summary

- 1. DYNASTI model adequately captures asymmetric dynamics
- 2. Standard model returns incorrect estimate in case of asymmetric dynamics
- 3. Both models adequately capture symmetric dynamics

Empirical DYNASTI example

Vektor platform
WM grid (~corsi block tapping)

Empirical DYNASTI example

Vektor platform

WM grid (~corsi block tapping)

RTs (all trials), N = 71, T = 502

Detrended

Are temporal dynamics for fast trials the same for slow trials?

Empirical DYNASTI example

DYNASTI model is preferred (by a lot)

Model	-2LL	AIC	BIC
Standard	-6330	-6310	-6287
DYNASTI	-7243	-7213	-7179

d

Empirical DYNASTI example

DYNASTI model is preferred (by a lot)

Inertia is considerable below mean RT

- Faster than average trials come in streaks
- Concentration?

Estimated Autocorrelation

Model	-2LL	AIC	BIC
Standard	-6330	-6310	-6287
DYNASTI	-7243	-7213	-7179

d

Empirical DYNASTI example

DYNASTI model is preferred (by a lot)

Inertia is considerable below mean RT

- Faster than average trials come in streaks
- Concentration?

But inertia is *negligible* above the mean

 Attentional lapses show swift mean reversion

Estimated Autocorrelation

Model	-2LL	AIC	BIC
Standard	-6330	-6310	-6287
DYNASTI	-7243	-7213	-7179

d

Empirical DYNASTI example

DYNASTI model is preferred (by a lot)

Inertia is considerable below mean RT

- Faster than average trials come in streaks
- Concentration?

But inertia is *negligible* above the mean

 Attentional lapses show swift mean reversion

Estimated Autocorrelation

Model	-2LL	AIC	BIC
Standard	-6330	-6310	-6287
DYNASTI	-7243	-7213	-7179

Empirical DYNASTI example

To take home

- Many cognitive processes plausibly have asymmetric dynamics
- Fitting DYNASTI implementations doesn't hurt! Try it out.
- Keep it maximal: estimation comes at negligible costs.
- Flexible framework to fit your specific RQ.

DYNASTI in bivariate models – RI-CLPM

Very similar to the DSEM, you explain the time series of X and Y with a mean (α) and inertia (φ) . For subject i across trials t:

$$X_{it} = \alpha_X + \varphi_{XX} (X_{i,t-1} - \alpha_X - + \varphi_{XY} (X_{i,t-1} - \alpha_Y - \varphi_{XY} + \varphi_{YY} (Y_{i,t-1} - \alpha_Y - \varphi_{YY} + \varphi_{YY} (Y_{i,t-1} - \alpha_Y - \varphi_{YY} + \varphi_{YY} (Y_{i,t-1} - \alpha_Y - \varphi_{YY} + \varphi_{YY} + \varphi_{YY} + \varphi_{YY} (Y_{i,t-1} - \alpha_Y - \varphi_{YY} + \varphi_{YY} +$$

DYNASTI in bivariate models – RI-CLPM

You allow individuals to have different means with η (the "random intercept") For subject i across trials t:

$$X_{it} = \mu_X + \eta_{Xi} + \varphi_{XX} (X_{i,t-1} - \mu_X - \eta_{Xi}) +$$

$$Y_{it} = \mu_Y + \eta_{Yi} + \varphi_{YY} (Y_{i,t-1} - \mu_Y - \eta_{Yi}) +$$

DYNASTI in bivariate models – RI-CLPM

And you add cross-lagged parameters (β), that is, effects from X on Y and the other way around. For subject i across trials t:

$$X_{it} = \mu_{X} + \eta_{Xi} + \varphi_{XX} (X_{i,t-1} - \mu_{X} - \eta_{Xi}) + \beta_{YX} (Y_{i,t-1} - \mu_{Y} - \eta_{Yi}) + \varepsilon_{Xit}$$

$$Y_{it} = \mu_{Y} + \eta_{Yi} + \varphi_{YY} (Y_{i,t-1} - \mu_{Y} - \eta_{Yi}) + \beta_{XY} (X_{i,t-1} - \mu_{X} - \eta_{Xi}) + \varepsilon_{Yit}$$

$$X_{i1} \qquad X_{i2} \qquad X_{i3}$$

$$Y_{i1} \qquad Y_{i2} \qquad Y_{i3}$$

DYNASTI in bivariate models – RI-CLPM

Both inertia and cross-lagged parameters can be allowed to differ for above- and below-mean values. For subject i across trials t:

$$\begin{split} X_{it} &= \mu_{X} + \eta_{Xi} + \varphi_{XX} \big(X_{i,t-1} - \mu_{X} - \eta_{Xi} \big) \ + \beta_{YX} \big(Y_{i,t-1} - \mu_{Y} - \eta_{Yi} \big) \ + \varepsilon_{Xit} \\ Y_{it} &= \mu_{Y} + \eta_{Yi} + \varphi_{YY} \big(Y_{i,t-1} - \mu_{Y} - \eta_{Yi} \big) \ + \beta_{XY} \big(X_{i,t-1} - \mu_{X} - \eta_{Xi} \big) + \varepsilon_{Yit} \\ \varphi_{XX} &= \begin{cases} \varphi_{XX}^{above}, & X_{i,t-1} - \mu_{X} - \eta_{Xi} \leq 0 \\ \varphi_{XX}^{below}, & X_{i,t-1} - \mu_{Y} - \eta_{Yi} \leq 0 \end{cases} \\ \beta_{YX}^{above}, & Y_{i,t-1} - \mu_{Y} - \eta_{Yi} \leq 0 \end{split}$$

DYNASTI in bivariate models – Simulations

