Using psychometrics to improve cognitive models—and theory ,DNCS) IT\I,[?];:;ESE d

Modeling the development of cognitive

abilities over time
Jessica Schaaf, Jessica.Schaaf(@radboudumc.nl, @JessicaVSchaaf

Radboud University % Radboudumc
N2



Using psychometrics to improve cognitive models—and theory

Cognition as dynamic process

COGSCI2024
IIIIIIII DYNAMICS or
Joe Biden’s ‘Cognitive Fluctuations’ COGNITION

July 24-27 « Rotterdam

Which version of the president will show up next?

Slip-ups like Joe Biden's misnaming of Trump and
Harris
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Cognition as dynamic process
COGSCIl2024

Noise DYNAMICS or
Joe Biden’s ‘Cegnitive Fluetnations COGNITION
July 24-27 « Rotterdam

Which version of the president will show up next?
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Modelling cognitive fluctuations

Detailed description of fluctuations

> On which time scales do cognitive
fluctuations occur?

> Can we relate cognitive fluctuations to
external variables?

Slip-ups like Joe Biden's misnaming of Trump and
Harris are common, and usually caused by lack
of sleep or stress, experts say
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Modelling cognitive fluctuations as noise
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Modelling cognitive fluctuations as something of interest
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Modelling cognitive fluctuations as something of interest
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Hierarchical modelling of cognitive fluctuations
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Dynamic Structural Equation Model
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Applications

Emotional/affective inertia
Stress inertia

Solitude 1nertia

RT 1nertia
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Challenges 1n standard DSEM

>Default inertia parameter 1s symmetric
> Inertia of deviations above and below the mean treated equally

> Responding faster than average equally likely to persist as
responding slower than average

> Probably not true
> post-error slowing

> any measure with ceiling effects
(e.g., intelligence or memory)
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Asymmetric variant of DSEM

Solution: Threshold AR

> Estimate two 1nertia parameters,
above and below the mean

Yit-1 _‘O_' Vit

=
I

<
+
c

<




Using psychometrics to improve cognitive models—and theory

Asymmetric variant of DSEM

Solution: Threshold AR
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DY Namics of Asymmetric Timeseries (DYNASTI)

Implemented in Stan: free, flexible, updates, community
Univariate and bivariate examples

Workshop on basics of DSEM 1n Stan: https://github.com/mearistodemou/
DSEM_workshop

Stan models and simulation code: https://osf.i0/hwmgk/



https://github.com/mearistodemou/DSEM_workshop
https://github.com/mearistodemou/DSEM_workshop
https://github.com/mearistodemou/DSEM_workshop
https://github.com/mearistodemou/DSEM_workshop
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DY Namics of Asymmetric Timeseries (DYNASTI)
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DYNASTI DSEM simulations  Asymmetric Symmetric
Ground Truth Ground Truth
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All code 1s openly available at https://osf.i0/hwmgk/
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DYNASTI DSEM simulations — summary

1. DYNASTI model adequately captures asymmetric dynamics

2. Standard model returns incorrect estimate in case of asymmetric
dynamics

3. Both models adequately capture symmetric dynamics
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All code 1s openly available at https://osf.i0/hwmgk/
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Empirical DYNASTI example

Vektor platform
WM grid (~corsi block tapping)
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Empirical DYNASTI example

Vektor platform

WM grid (~corsi block tapping)
RTs (all trials), N="71, T =502
Detrended

Standard vs DYNASTI model

Are temporal dynamics for fast
trials the same for slow trials?

response_time
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Working memory
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Empirical DYNASTI example

DYNASTI model is preferred (by a lot)

Standard -6330 -6310 -6287
DYNASTI -7243 -7213 -7179
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Empirical DYNASTI example

DYNASTI model is preferred (by a lot)
DYNASTI

Inertia is considerable below mean RT (below mean)

* Faster than average trials
come 1n streaks
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 (Concentration?

Estimated Autocorrelation

Standard -6330 -6310 -6287
DYNASTI -7243 -7213 -7179
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Empirical DYNASTI example

DYNASTI model is preferred (by a lot)
DYNASTI DYNASTI

(above mean) (below mean)

* Faster than average trials
come 1n streaks ‘
I I
0.0 0.2

Inertia 1s considerable below mean RT

I I I
0.4 0.6 0.8

 (Concentration?

But inertia 1s negligible above the mean Estimated Autocorrelation

* Attentional lapses show swifi

mean reversion

Standard -6330 -6310 -6287
DYNASTI -7243 -7213 -7179
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Empirical DYNASTI example

DYNASTI model is preferred (by a lot)

Standard

DYNASTI DYNASTI
(above mean) (below mean)

* Faster than average trials
come 1n streaks ‘ 038

I I I | I
0.0 0.2 0.4 0.6 0.8

Inertia 1s considerable below mean RT

 (Concentration?

But inertia 1s negligible above the mean Estimated Autocorrelation

* Attentional lapses show swifi

mean reversion

Standard  -6330 -6310 -62877
Standard model would be wrong about both DYNASTI -7243  -7213 -7179
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Empirical DYNASTI example

Mean Mean + inertia (standard)
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To take home

- Many cognitive processes plausibly have asymmetric dynamics
- Fitting DYNASTI implementations doesn’t hurt! Try 1t out.

- Keep 1t maximal: estimation comes at negligible costs.

- Flexible framework to fit your specific RQ.
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DYNASTI 1n bivariate models — RI-CLPM

Random Intercept Cross-Lagged Panel Model
Panel data (= 3-10 waves)

Q Xiz | XB
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DYNASTI in bivariate models — RI-CLPM

Very similar to the DSEM, you explain the time series of X and Y with a mean (o)
and 1nertia (¢). For subject i across trials 7 :

Xy =oy + (Xi,t—l — Oy - +
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DYNASTI 1n bivariate models — RI-CLPM

You allow individuals to have different means with n (the “random intercept”)
For subject i across trials 7 :

Xy =WPx+nx; + (pXX(Xi,t—l — Hx — 'IXi) +
Y= by + 1y + (PYY(Yi,t—l — Ky — Ny; ) +
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DYNASTI 1n bivariate models — RI-CLPM

And you add cross-lagged parameters (J3), that 1s, effects from X on Y and the
other way around. For subject i across trials 7 :

Xy=WPx+nx + (PXX(Xi,t—l — MKy — T]Xi) + (Yi,t—l — Ky — nYi) + €x;
Y, = py+ny+ (pYY(Yi,t—l — Hy = NMy; ) + (Xi,t—l — Hx — ﬂXi) T €y;
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DYNASTI in bivariate models — RI-CLPM

Both inertia and cross-lagged parameters can be allowed to differ for above- and
below-mean values. For subject i across trials ¢ :

Xy =Hx+ny + (Xi,t—l — My — T]Xi) + (Yi,t—l — Hy — nYi) + €xj
Y, = py+ny+ (Yi,t—l — Hy = NMy; ) + (Xi,t—l — Hx — ﬂXi) T €y;
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DYNASTI 1n bivariate models — Simulations
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