A comparison of *latent variable* (*g*-Factor) and *mutualistic network models* using *longitudinal data*: *An application of learning mathematics*

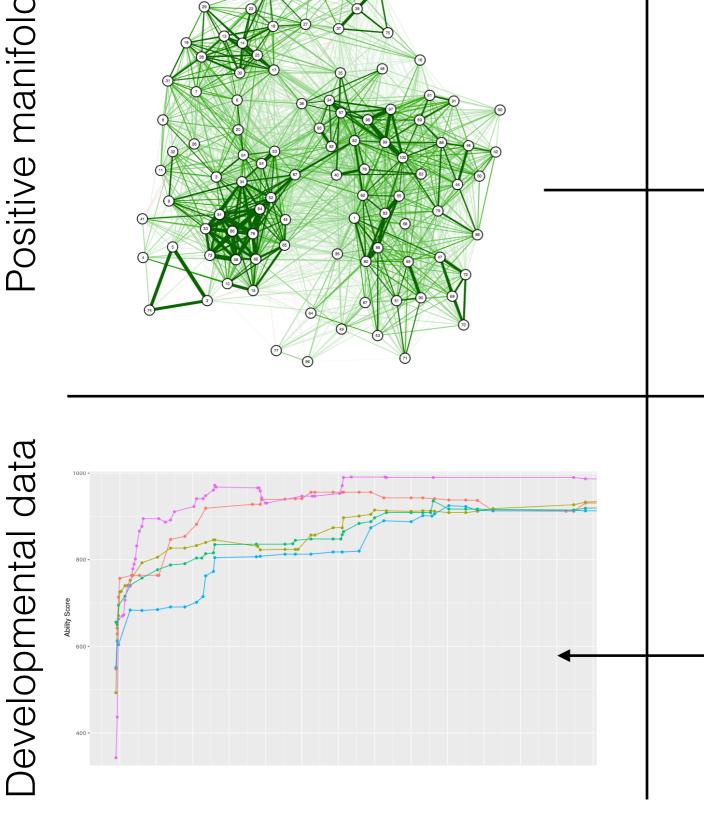
Abe Hofman - a.d.hofman@uva.nl - https://www.edaptiv.org/

Shared work with: Rogier Kievit, Ingmar Visser, Claire Stevenson, Dylan Molenaar and Han van der Maas

Workshop:

USING PSYCHOMETRICS TO IMPROVE COGNITIVE MODELS-AND THEORY

COGSCI - 2024



 ξ_1 X_4 \mathbf{x}_1 **X**₂ X_3 δ_4 δ3 δ_1 $\mathfrak{d}_{\mathfrak{I}}$

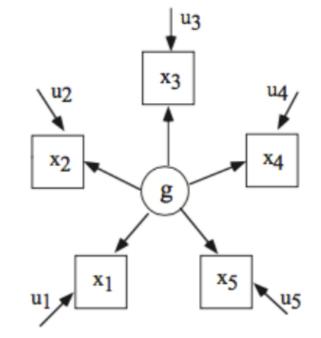
Factor Analysis

Ontology: Causal construct vs index (e.g., Borsboom[1]; Van der Maas[2])

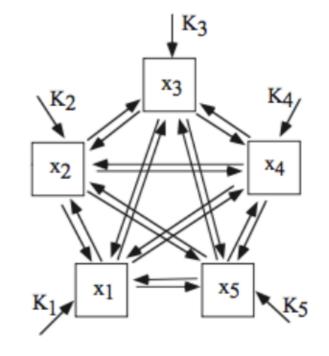
What is the true data generating mechanism? (e.g., Kruis [3])

Compare Two Explanations | Predictions

- g-Factor (Spearman [4]):
 - Development is caused by changes in the true ability *g*

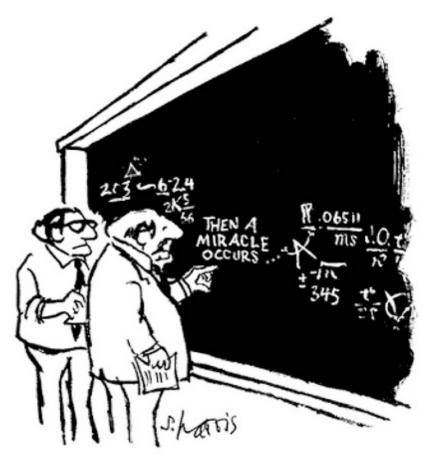


- Mutualism (Van der Maas [5])
 - Development is caused by a dynamical model including reciprocal causation or mutualism.



Compare Two Explanations | Implications

- g-Factor
 - g exists independent of the collected data and has an causal role in the data generating system
 - Were is g located? Can we (ultimately) uncover the latent aspect and truly observe g?
- Mutualism
 - g is an emerging property of the dynamical system that drives development and does not have any interpretation more than an 'index' variable (data reduction)
 - What are the wiring mechanisms of the developmental system (edges)? Where are individual differences present?



"I think you should be more explicit here in step two."

Compare Two Explanations | *Modelling Framework*

"When thinking about any repeated measures analysis it is best to ask first, what is your model for change?" (McArdle [6], p 579)

Latent Change Score Models

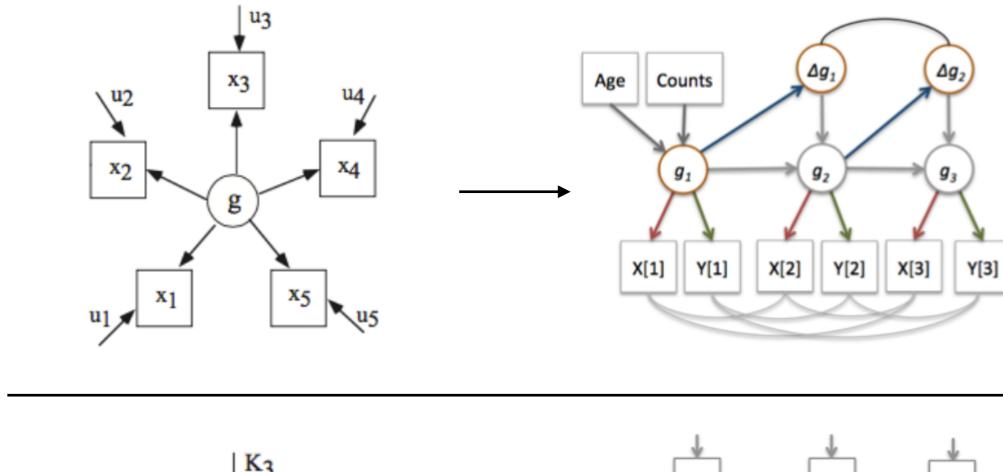
- 1. Structural equation models aimed at measuring (predicting) changes between time-points
- 2. + Developmental dataset, no assumptions of stationarity
- 3. + Predicting changes and not mean scores

Regression model: $y_{pt} = \beta_{t,t-1} \times y_{tp-1} + \Delta_{tp}$ $\beta_{t,t+1} = 0$: $\Delta_{pt} = y_{pt} - y_{pt-1}$

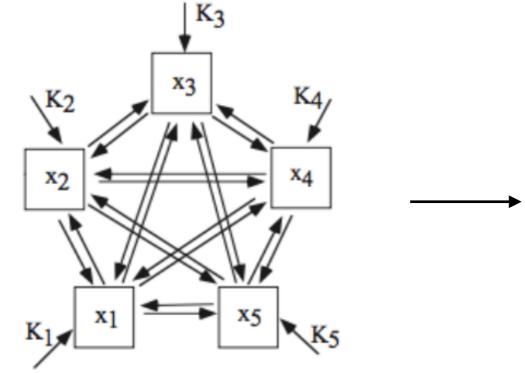
Bivariate extension:

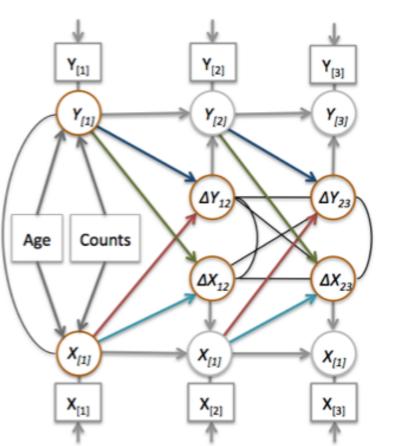
$$\Delta_{1,pt} = \beta_1 y_{1,pt-1} + \gamma_{21} y_{2,pt-1}$$
$$\Delta_{2,pt} = \beta_2 y_{2,pt-1} + \gamma_{12} y_{1,pt-1}$$

 β = self-feedback; γ = coupling



Model 1: g-factor





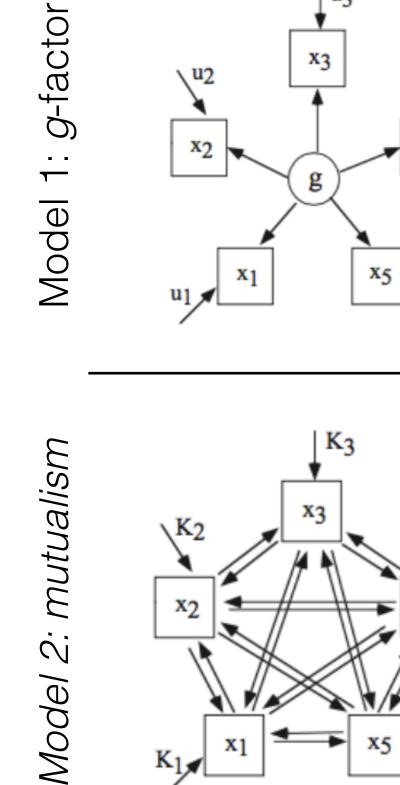
Age

Counts

 \boldsymbol{g}_1

X[1]

Y[1]



x1

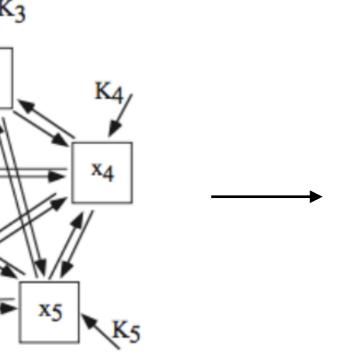
K_l

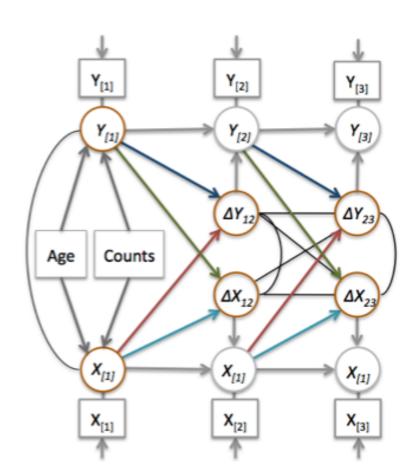
u3

u4

х4

u5





∆g₁

 g_2

Y[2]

X[2]

∆g₂

 g_3

Y[3]

X[3]

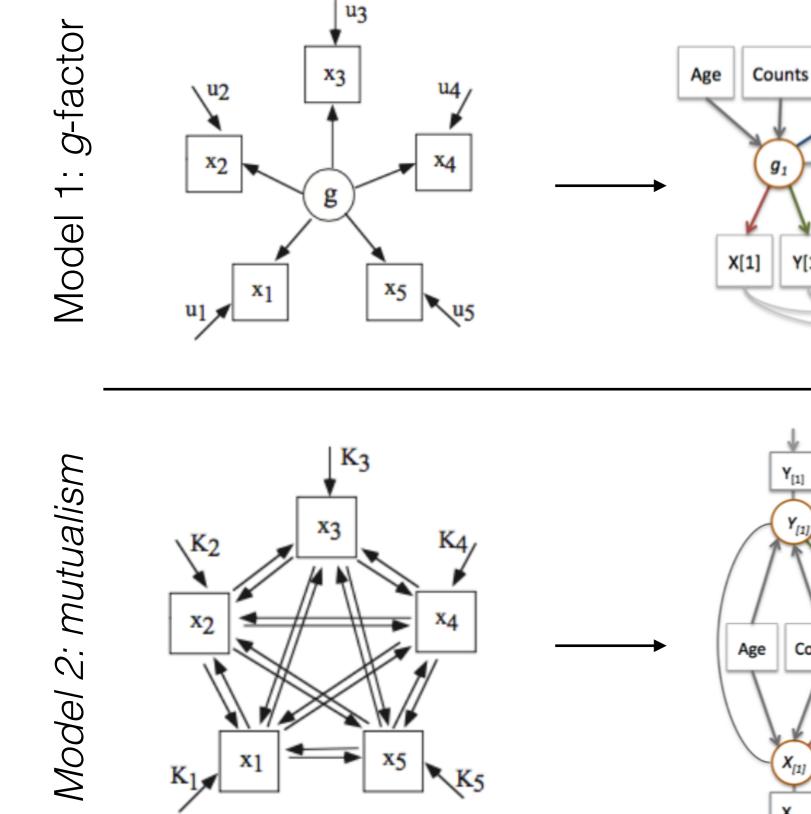
Model 3:

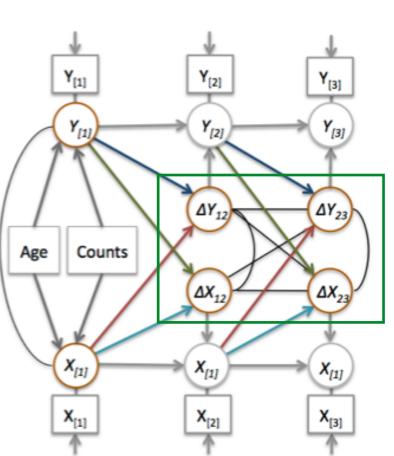
no coupling model (coupling = 0)

serves as a baseline model

 \boldsymbol{g}_1

Y[1]





∆g₁

 g_2

Y[2]

X[2]

∆g₂

 g_3

X[3]

Y[3]

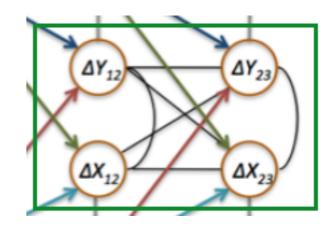
Model 3:

no coupling model (coupling = 0)

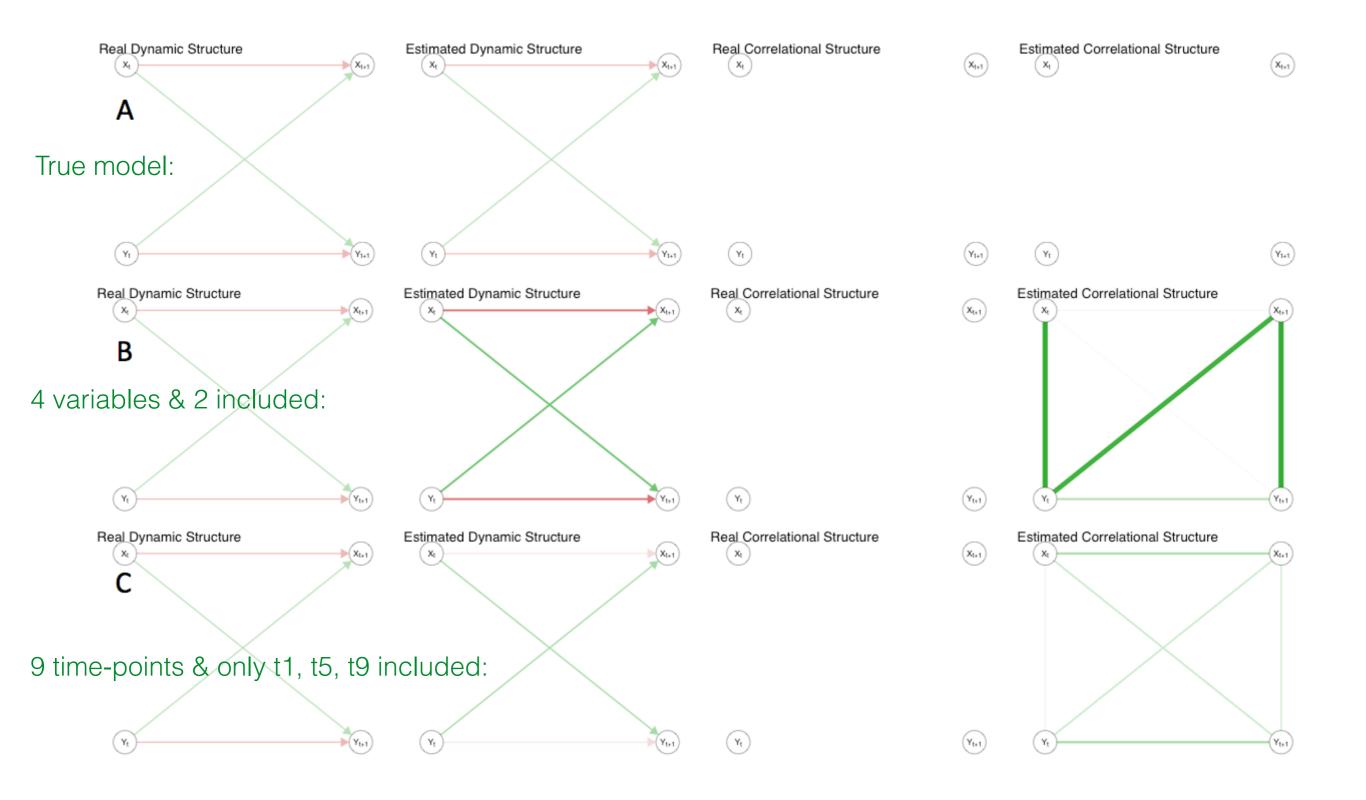
serves as a baseline model

Methods | Correlated Change Scores

- g-Factor
 - Change scores should be correlated, since *g* drives the changes in multiple domains.
- Mutualism
 - In principle change scores should be uncorrelated. But if:
 - a subset of all variables in the dynamical system are observed (Scenario B), or:
 - a part of all time-points are observed (Scenario C), than :
 - these correlations are inflated.

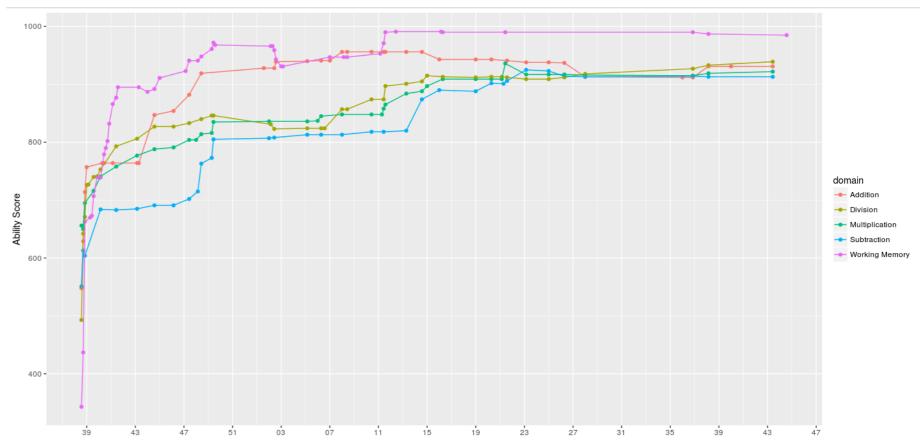


Methods | Correlated Change Scores

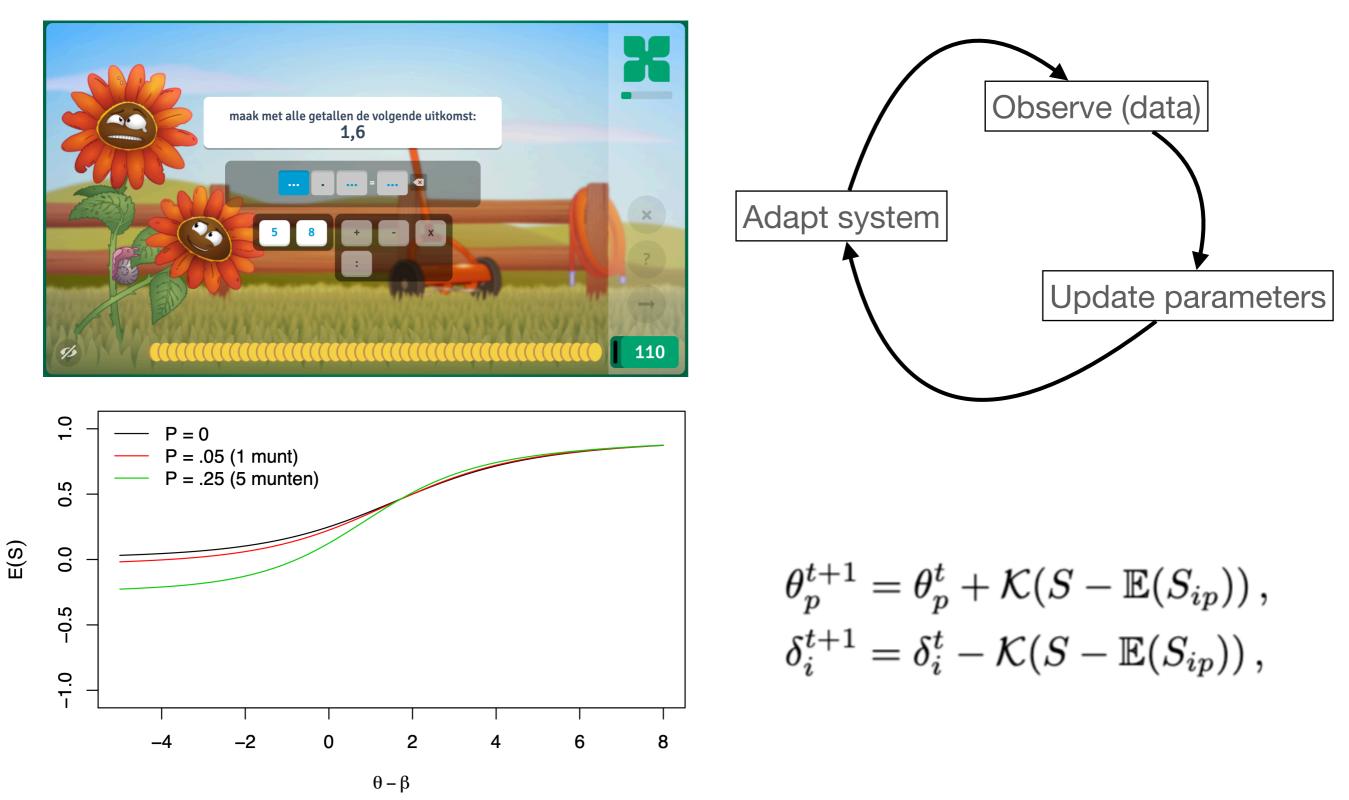


Methods | Data: Math Garden

- Online adaptive learning
 program of maths aimed
 to collect large time intensive data to study
 learning
- Wide set of **games** (mainly focused on primary school)
- We track the abilities estimates using an adaptive elo algorithm (Klinkenberg [7]) for each game and an extended measurement model including accuracy and time (Maris [8])



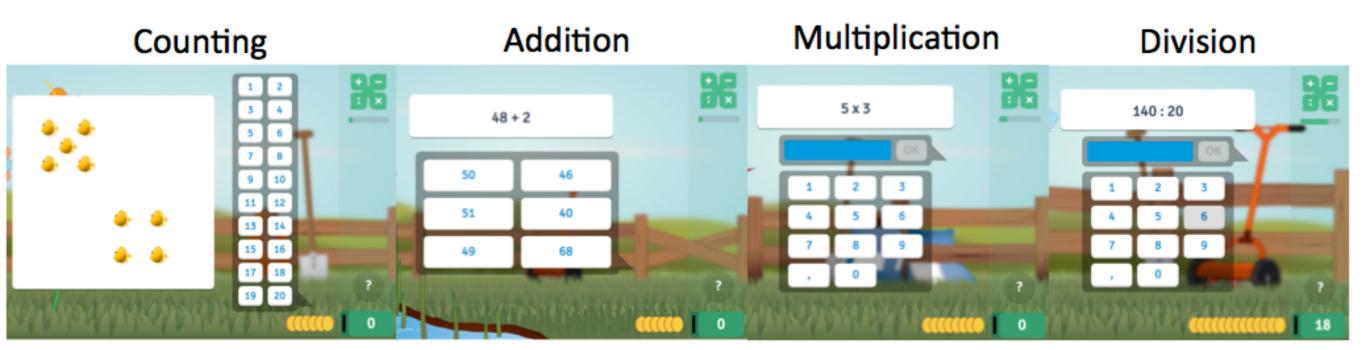
Intermezzo | Why Psychometrics?



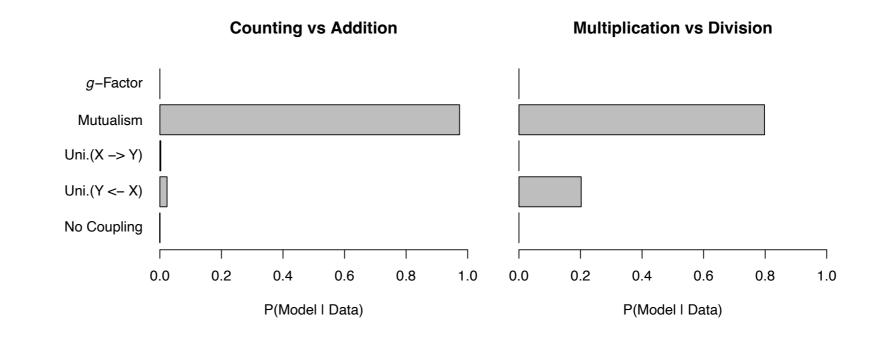
Methods | Data: Math Garden

Data Selection

- Two large data sets:
 (1) Counting and Addition (N = 11.980)
 (2) Multiplication and Division (N = 12.368)
- Three time-points: T0 = Sep (start school year) T1 = Jan (middle) T2 = May-June (end)
- Included if subject played at least both domains once (missing data -> Full Information Maximum Likelihood)



Results | Model Comparison

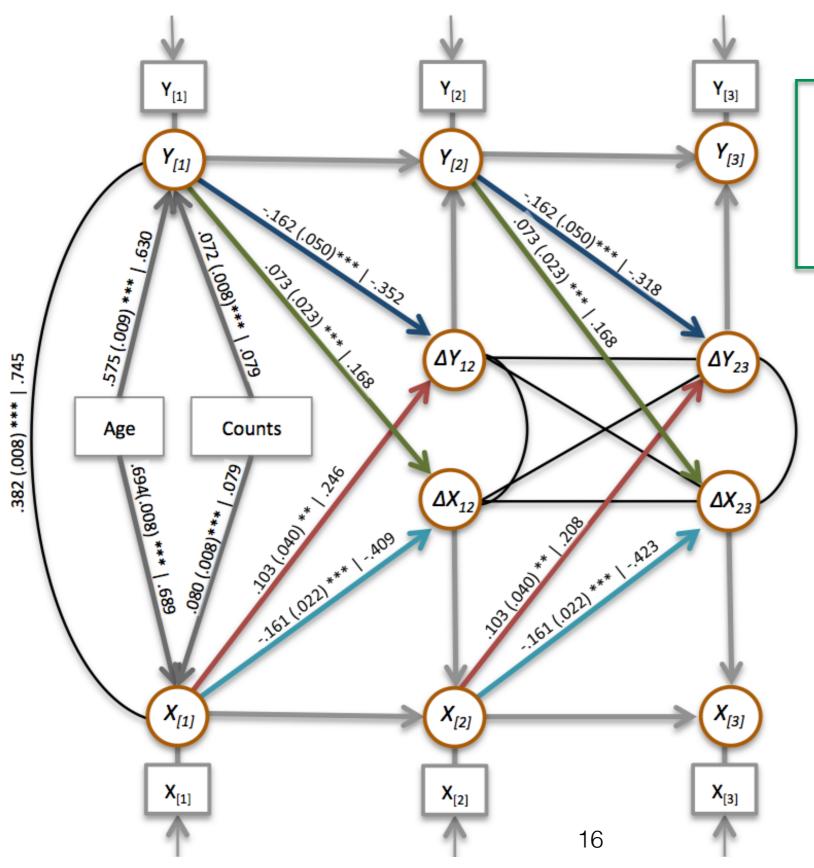


AIC-weights:

Table 2: Fit statistics for the different LSCM estimated on both datasets.								
Domains	Model	Chi	df	CFI	RMSEA	SRMR	AIC	BIC
Counting	g-Factor	571.66	15	0.987	0.056	0.046	142138	142352
&	Mutualism	461.48	11	0.989	0.059	0.038	142036	142279
Addition	$\mathrm{Uni.}(\mathrm{C}\to\mathrm{A})$	475.05	12	0.989	0.057	0.039	142048	142284
	$\mathrm{Uni.}(\mathrm{C} \leftarrow \mathrm{A})$	470.95	12	0.989	0.057	0.038	142044	142279
	No coupling	485.24	13	0.989	0.056	0.038	142056	142284
Multipli-	g-Factor	671.52	15	0.989	0.059	0.030	149304	149520
cation	Mutualism	517.17	11	0.991	0.061	0.026	149158	149403
&	$\mathrm{Uni.}(\mathrm{M}\to\mathrm{D})$	575.44	12	0.990	0.062	0.027	149214	149452
Division	$\mathrm{Uni.}(\mathrm{M} \leftarrow \mathrm{D})$	521.91	12	0.991	0.059	0.026	149161	149398
	No coupling	597.61	13	0.990	0.060	0.026	149234	149464

Note. The the best fitting models are printed in bold. Uni. = Unidirectional Model

Results | Model Parameters (1)



Means: $X_{[1]} = -.084$ $\Delta X_{12} = .339 (.006)^{***}$ $\Delta X_{23} = .267 (.006)^{***}$ $Y_{[1]} = -.032$ $\Delta Y_{12} = .354 (.008)^{***}$ $\Delta Y_{23} = .164 (.009)^{***}$ Correlations Δ : $COR(\Delta X_{12}, \Delta Y_{12}) = .093 (.006)^{***} | .546^{***}$ $COR(\Delta X_{23}, \Delta Y_{23}) = .089 (.005)^{***} | .566^{***}$ $COR(\Delta X_{12}, \Delta X_{23}) = -.005 (.008) | -.037$ $COR(\Delta Y_{12}, \Delta Y_{23}) = -.009 (.012) | -.044$

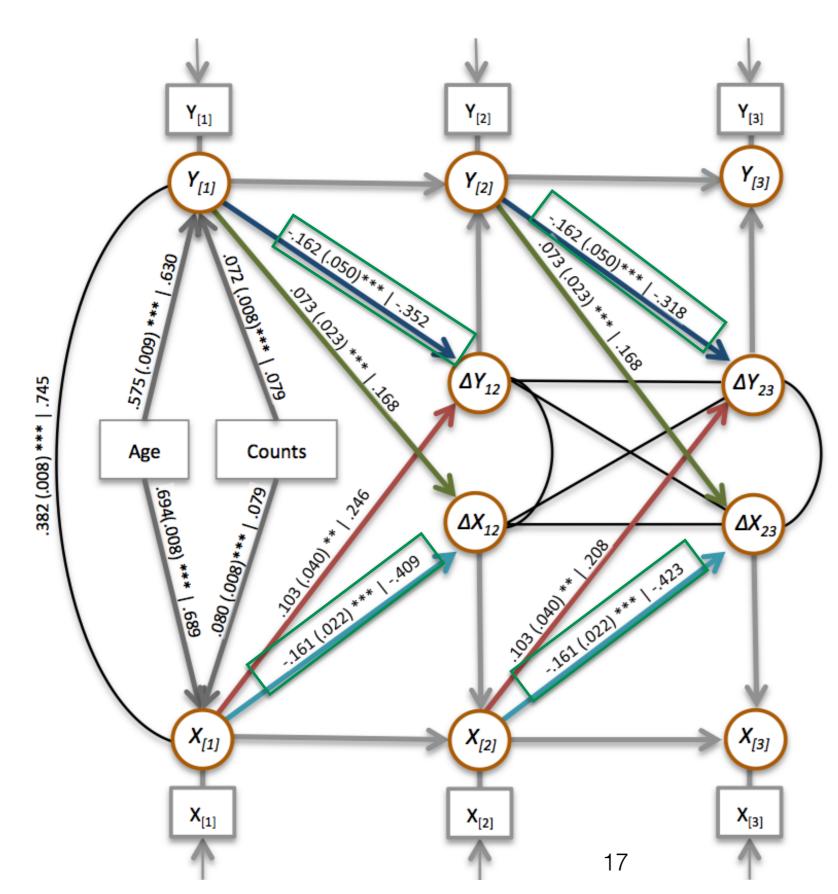
 $COR(\Delta X_{12}, \Delta Y_{23}) = -.002 (.007) | -.011$ $COR(\Delta Y_{12}, \Delta X_{23}) = -.008 (.007) | -.054$

Variances:

$$\begin{split} X_{[1]} &= .528 (.011) * * * | .520 \\ \Delta X_{12} &= .145 (.013) * * * | .922 \\ \Delta X_{23} &= .128 (.017) * * * | .916 \\ Y_{[1]} &= .498 (.018) * * * | .597 \\ \Delta Y_{12} &= .171 (.026) * * * | .964 \\ \Delta Y_{23} &= .225 (.035) * * * | .957 \end{split}$$

X_[1-3] = .034 (.008) *** Y_[1-3] = .106 (.018) ***

Results | Model Parameters (2)



Means: $X_{[1]} = -.084$ $\Delta X_{12} = .339 (.006)^{***}$ $\Delta X_{23} = .267 (.006)^{***}$ $Y_{[1]} = -.032$ $\Delta Y_{12} = .354 (.008)^{***}$ $\Delta Y_{23} = .164 (.009)^{***}$

Correlations Δ :

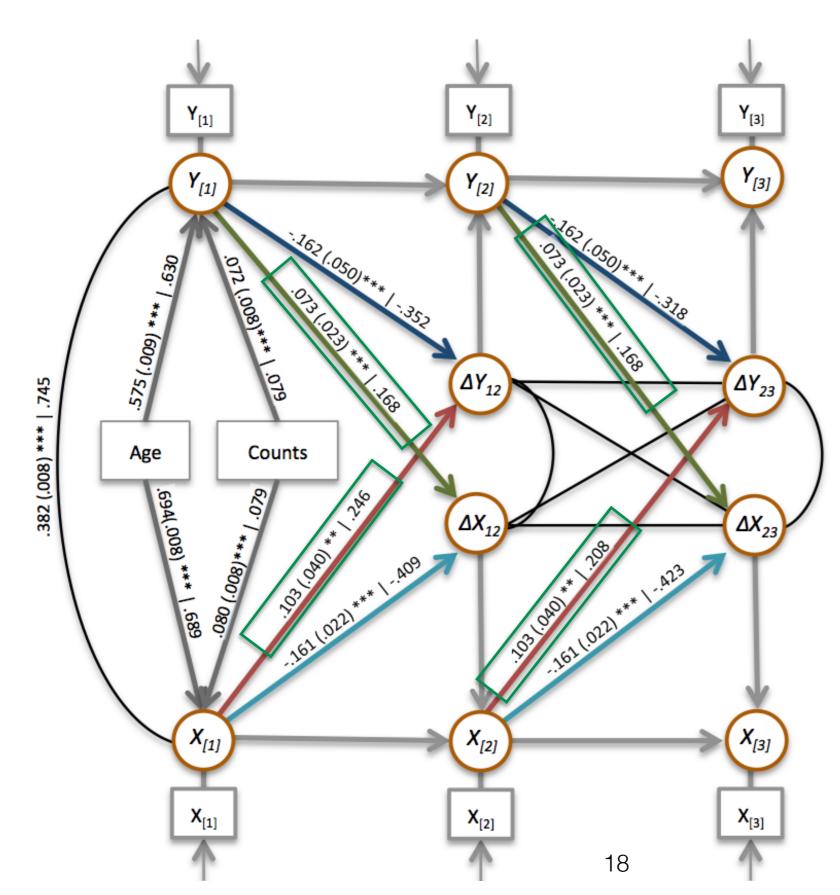
 $COR(\Delta X_{12}, \Delta Y_{12}) = .093 (.006) *** | .546***$ $COR(\Delta X_{23}, \Delta Y_{23}) = .089 (.005) *** | .566***$ $COR(\Delta X_{12}, \Delta X_{23}) = -.005 (.008) | -.037$ $COR(\Delta Y_{12}, \Delta Y_{23}) = -.009 (.012) | -.044$ $COR(\Delta X_{12}, \Delta Y_{23}) = -.002 (.007) | -.011$ $COR(\Delta Y_{12}, \Delta X_{23}) = -.008 (.007) | -.054$

Variances:

$$\begin{split} X_{[1]} &= .528 (.011) *** \mid .520 \\ \Delta X_{12} &= .145 (.013) *** \mid .922 \\ \Delta X_{23} &= .128 (.017) *** \mid .916 \\ Y_{[1]} &= .498 (.018) *** \mid .597 \\ \Delta Y_{12} &= .171 (.026) *** \mid .964 \\ \Delta Y_{23} &= .225 (.035) *** \mid .957 \end{split}$$

```
X<sub>[1-3]</sub> = .034 (.008) ***
Y<sub>[1-3]</sub> = .106 (.018) ***
```

Results | Model Parameters (3)



Means: $X_{[1]} = -.084$ $\Delta X_{12} = .339 (.006)^{***}$ $\Delta X_{23} = .267 (.006)^{***}$ $Y_{[1]} = -.032$ $\Delta Y_{12} = .354 (.008)^{***}$ $\Delta Y_{23} = .164 (.009)^{***}$

Correlations Δ :

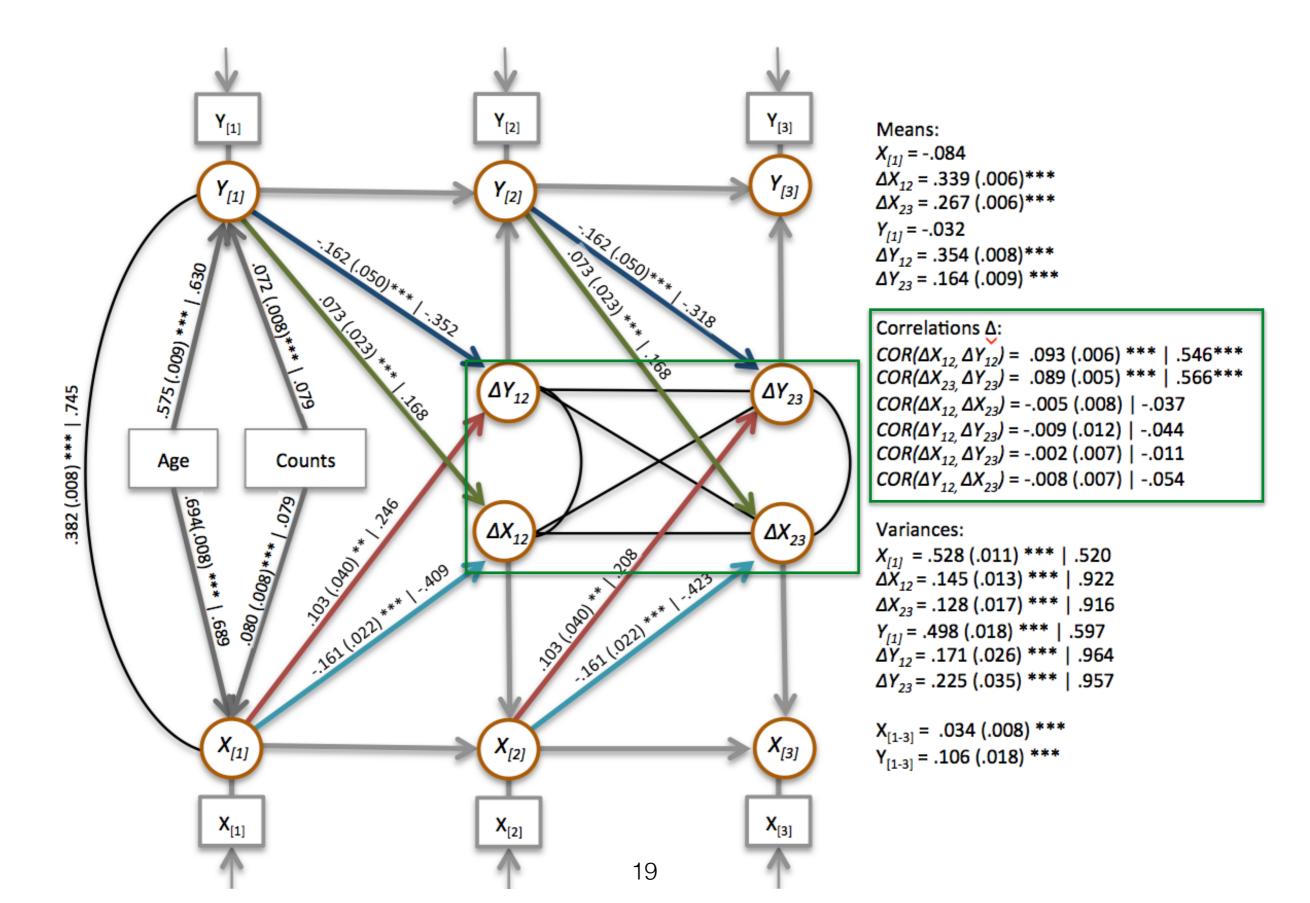
 $COR(\Delta X_{12}, \Delta Y_{12}) = .093 (.006) *** | .546***$ $COR(\Delta X_{23}, \Delta Y_{23}) = .089 (.005) *** | .566***$ $COR(\Delta X_{12}, \Delta X_{23}) = -.005 (.008) | -.037$ $COR(\Delta Y_{12}, \Delta Y_{23}) = -.009 (.012) | -.044$ $COR(\Delta X_{12}, \Delta Y_{23}) = -.002 (.007) | -.011$ $COR(\Delta Y_{12}, \Delta X_{23}) = -.008 (.007) | -.054$

Variances:

 $X_{[1]} = .528 (.011) *** | .520$ $\Delta X_{12} = .145 (.013) *** | .922$ $\Delta X_{23} = .128 (.017) *** | .916$ $Y_{[1]} = .498 (.018) *** | .597$ $\Delta Y_{12} = .171 (.026) *** | .964$ $\Delta Y_{23} = .225 (.035) *** | .957$

```
X<sub>[1-3]</sub> = .034 (.008) ***
Y<sub>[1-3]</sub> = .106 (.018) ***
```

Results | Model Parameters (4)



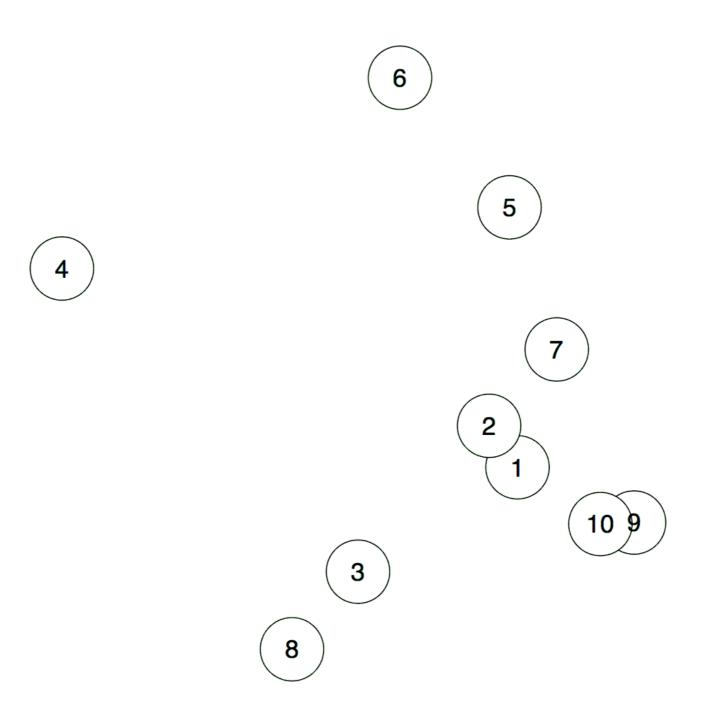
Conclusion | G vs Mutualism

- Positive manifold, can be explained by mutualistic effects not present according to a *g*-factor account of cognitive development (replicating the results of Kievit [2017])
- Significant coupling is needed for an accurate description of the data.
- Hybrid account: the remaining correlational structure between change scores could both be explained by g and mutualistic effects (data selection effects)

Discussion | *G vs Mutualism*

- Mechanisms of coupling?
- Mutualism at what level: abilities (factors) or item responses? (Wired Cognition, with Alexander Savi, Gunter Maris & Han van der Maas)
- Model extensions: more variables, time-points & individual differences in coupling.
- Replications: smaller experimental dataset & large data sets with other domains.
- Positive manifold is everywhere (intelligence data; scholastic abilities; depression; ...)

Developing Correlations | G vs Mutualism



Discussion | Why Psychometrics?

- G-factor -> Psychometrics
- Mutualism = Data Generating Model (and not true)
- Mutualism != Cognitive Model (Architecture)
- The field of psychometrics is evolved around individual differences. Cognition looks for similarities.

References | Questions

[1] Borsboom, Mellenbergh & Van Heerden (2003). The theoretical status of latent variables. Psychological review, 110, 203.

[2] Van der Maas et al (2006) A dynamical model of general intelligence: the positive manifold of intelligence by mutualism. Psychological review, 113, 842–861.

[3] Kruis & Maris (2016) Three representations of the ising model. Scientific Reports, 6, 1–11

[4] Spearman (1927). The abilities of man. Macmillan

[5] McArdle (2009). Latent variable modeling of differences and changes with longitudinal data.

Annual review of psychology, 60, 577-605.

[6] Klinkenberg, Straatemeier & Van der Maas (2011)

Computer adaptive practice of maths

ability using a new item response model for on the fly ability and difficulty estimation. Computers & Education, 57, 1813– 1824.

[7] Maris & Van der Maas (2012). Speed-accuracy response models: Scoring rules based on response time and accuracy. Psychometrika,77, 615–633.

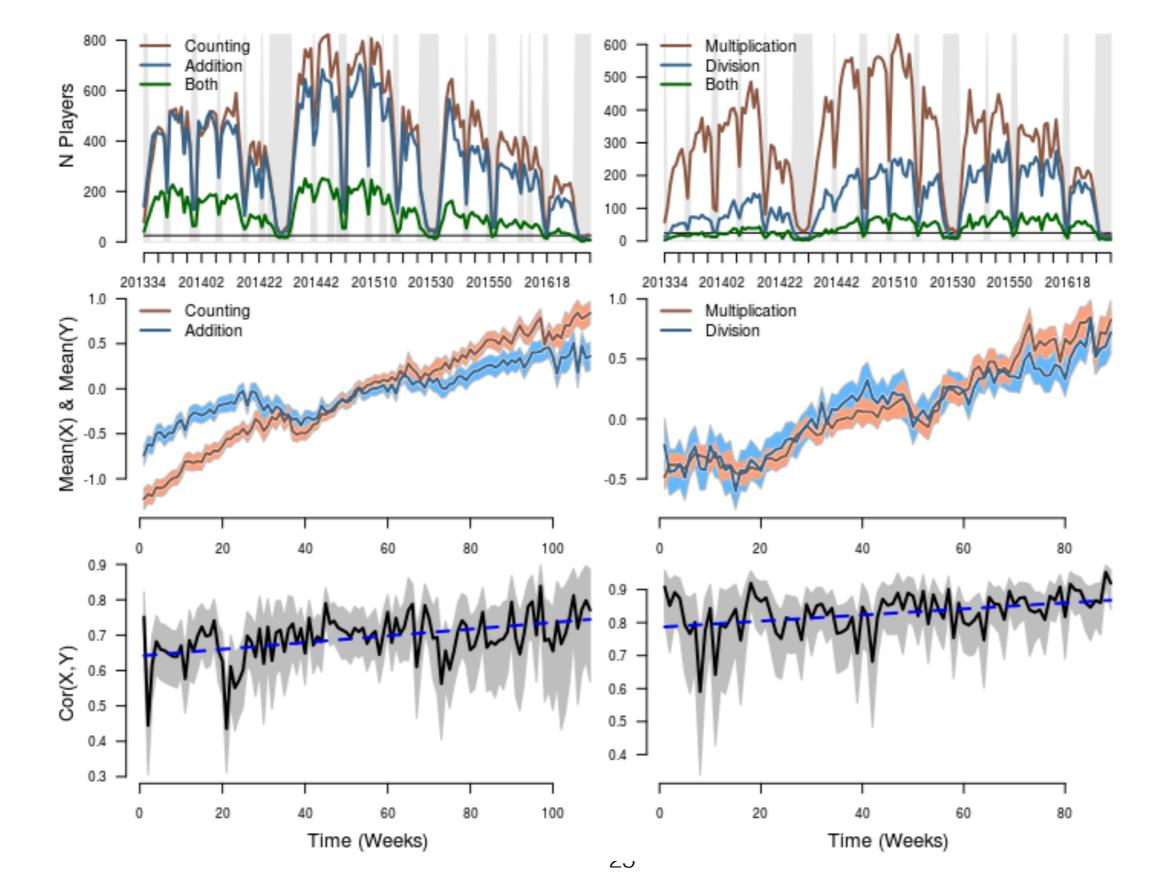
[8] Kievit et al (2017). Mutualistic coupling between vocabulary and reasoning supports

cognitive development during late adolescence and early adulthood. Psychological Science.

<u>Link to OSF</u>

<u>a.d.hofman@uva.nl</u>

Developing Correlations | G vs Mutualism



Simulations | Model Comparison

- True model (coupling = 0):
 (g-factor = co-coupling) > mutualism
- True model (coupling > 0.1): mutualism > g-factor > co-coupling

