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Positive manifold
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Ontology:

Causal construct vs index
(e.g., Borsboom|[1]; Van der
Maas|?2])

What is the true data
generating mechanism? (e.g.,
Kruis [3])




Compare Two Explanations | Predictions

e g-Factor (Spearman [4]):
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Compare Two Explanations | Implications

» g-Factor

e g exists independent of the collected data
and has an causal role in the data generating
system

 Were is g located?” Can we (ultimately)
uncover the latent aspect and truly observe
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 Mutualism

e gis an emerging property of the dynamical
system that drives development and does not s Rk
have any interpretation more than an ‘index’ step two.”
variable (data reduction)

* What are the wiring mechanisms of the
developmental system (edges)? Where are
individual differences present?



Compare Two Explanations | Modelling Framework

"When thinking about any repeated measures analysis it is best to
ask first, what is your model for change”” (McArdle [6], p 579)

Latent Change Score Models

1. Structural equation models aimed at measuring
(predicting) changes between time-points

2. + Developmental dataset, no assumptions of stationarity

3. + Predicting changes and not mean scores



Methods | Latent Change Score Models

Regression model: Ypt = 5t,t—1 X Yip—1 T Azfp
Bt,z‘+7 = 0: Apt — ypt - ypt—l
Bivariate extension: A1 pt = BLYLpt—1 + V21Y2.pt—1

Aot = Boy2 pt—1 + V12Y1.pt—1

B = self-feedback; y = coupling



Model 1: g-factor

Methods | Latent Change Score Models
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Model 2: mutualism




Model 1: g-factor

Model 2: mutualism

Methods | Latent Change Score Models
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Methods | Latent Change Score Models
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Methods | Correlated Change Scores

e g-Factor
e Change scores should be correlated,
since g drives the changes in multiple
domains.

 Mutualism

* |n principle change scores should be
uncorrelated. But if:

e a subset of all variables in the
dynamical system are observed
(Scenario B), or:

e a partof all time-points are observed
(Scenario C), than :

e these correlations are inflated.
10



Methods | Correlated Change

Real Dynamic Structure
X |
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Methods | Data: Math Garden

* Online adaptive learning
program of maths aimed
to collect large time-
Intensive data to study
learning

* Wide set of games (mainly
focused on primary school)

* We track the abilities
estimates using an

adaptive elo algorithm g
(Klinkenberg [7]) for each . iyt —

game and an extended | -
measurement model ! Il =
including accuracy and  ~ f

time (Maris [8])
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Intermezzo | Why Psychometrics?
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Methods | Data: Math Garden

Data Selection

e Two large data sets:
(1) Counting and Addition (N = 11.980)
(2) Multiplication and Division (N =12.368)

e Three time-points:
TO = Sep (start school year)
T1 =Jan (middle)
T2 = May-June (end)

 Included if subject played at least both domains once (missing data -> Full
Information Maximum Likelihood)
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AIC-weights:

Results | Model Comparison

Counting vs Addition

g-Factor

Mutualism

Uni.(X =)

Uni.(Y <~ X) ]

No Coupling

[ I I
0.0 0.2 0.4

I
0.6

P(Model | Data)

0.8

1.0

Multiplication vs Division

0.0

0.2

I
0.4

I
0.6

0.8

P(Model | Data)

1.0

Fit statistics:

Table 2: Fit statistics for the different LSCM estimated on both datasets.

Domains  Model Chi df CFI ~ RMSEA SRMR AIC BIC
Counting g-Factor 571.66 15 0.987 0.056 0.046 142138 142352
& Mutualism  461.48 11 0.989 0.059 0.038 142036 142279
Addition Uni.(C — A) 475.05 12 0.989 0.057 0.039 142048 142284
Uni.(C <+ A) 47095 12 0.989 0.057 0.038 142044 142279
No coupling 485.24 13 0.989 0.056 0.038 142056 142284
Multipli-  g-Factor 671.52 15 0.989 0.059 0.030 149304 149520
cation Mutualism  517.17 11 0.991 0.061 0.026 149158 149403
& Uni.(M — D) 57544 12 0.990 0.062 0.027 149214 149452
Division ~ Uni.(M «+ D) 52191 12 0.991 0.059 0.026 149161 149398
No coupling 597.61 13  0.990 0.060 0.026 149234 149464

Note. The the best fitting models are printed in bold. Uni. = Unidirectional Model



.382 (.008) *** | .745

Results | Model Parameters (1)

Means:

Xm =-.084
AX,,=.339 (.006)***
AX,; = .267 (.006)***
Yw =-.032
AY,,=.354 (.008)***
AY,; = .164 (.009) ***

Correlations e:

COR(AX,, AY;,) = .093 (.006) *** | .546***
COR(AX23IAY23)= .089 (.005) *** | 566***
COR(AX,, AX,3) = -.005 (.008) | -.037

COR(4Y,, AY,;) = -.009 (.012) | -.044
COR(4X,, AY,,) = -.002 (.007) | -.011
COR(AY,, AX,,) = -.008 (.007) | -.054

Variances:

Xy = .528 (.011) *** | .520
AX,,=.145 (.013) *** | .922
AX,;=.128 (.017) *** | .916
Y,y =498 (.018) *** | 597

AY,,=.171(.026) *** | .964
AY,;=.225 (.035) *** | .957

X135 = .034 (.008) ***
Y[1_3] =.106 (.018) ook
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Conclusion | G vs Mutualism

e Positive manifold, can be explained by mutualistic
effects not present according to a g-factor account
of cognitive development (replicating the results of
Kievit [2017])

e Significant coupling is needed for an accurate
description of the data.

* Hybrid account: the remaining correlational
structure between change scores could both be
explained by g and mutualistic effects (data
selection effects)
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Discussion | G vs Mutualism

Mechanisms of coupling?

Mutualism at what level: abilities (factors) or item
responses? (Wired Cognition, with Alexander Sauvi,
Gunter Maris & Han van der Maas)

Model extensions: more variables, time-points &
individual differences in coupling.

Replications: smaller experimental dataset & large data
sets with other domains.

Positive manitold is everywhere (intelligence data;
scholastic abilities; depression; ...)

21



Developing Correlations | G vs Mutualism
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Discussion | Why Psychometrics?

G-factor -> Psychometrics
Mutualism = Data Generating Model (and not true)
Mutualism = Cognitive Model (Architecture)

The field of psychometrics is evolved around
individual differences. Cognition looks for similarities.
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BIC Difference

Simulations | Model Comparison

True model (coupling = 0):
(g-factor = co-coupling) > mutualism

True model (coupling > 0.1):
mutualism > g-tfactor > co-coupling
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